the calculated with the experimental curves it is necessary to know the value of p for the state of the specimen when each photograph was taken. Since the positions of the diffraction maxima move as p changes, it is possible to estimate p for any photograph from the positions of any of the maxima. From the curve shown in Fig. 2(a) the value of p corresponding to each photograph was obtained from the measured apparent spacings of the reflexion in the region of 9 kX . Using this p value the calculated

Fig. 3. Experimental microphotometer traces and calculated intensities of the diffraction maxima.
spacings of the other diffraction maxima were read off from Fig. 2(b) and (c), and Table 1 shows that agreement is good between these values and the observed values.

The spacings in Table 1 marked with an asterisk are for $p=0.5$ as they cannot be obtained from Fig. 1 or 2 for $p=0.48$.

Fig. 3 shows the experimental microphotometer traces after subtraction of background and calculated intensities of the diffraction maxima. The experimental traces for photographs 1, 2 and 3 are compared with the calculated intensity distribution curves for $p=0.2, p=0.3$ and $p=0.5$ already shown in Fig. 1. Here again agreement is good.

The material used for the third photograph appears to have a p value of about $0 \cdot 5$, i.e. half the layers can be expanded by glycerol. It is interesting to note that pyridine sorption measurements on samples of lithium montmorillonite heated to $190^{\circ} \mathrm{C}$. showed about half the uptake of unheated samples.

References

Brown, G. \& MacEwan, D. M. C. (1950). J. Soil Sci. 1, 239.
Greene-Kelly, R. (1952). Clay Min. Bull. 1, 221.
Hendricks, S. B. \& Teller, E. (1942). J. Chem. Phys. 10, 147.
Jaceson, W. W. \& West, J. (1930). Z. Kristallogr. 76, 211.

James, R. W. \& Brindley, G. W. (1931). Phil. Mag. (7), 12, 81.
MacEwan, D. M. C. (1949). J. Soil Sci. 1, 90.
Méring, J. (1949). Acta Cryst. 3, 371.
Nagelschmidt, G. (1941). J. Sci. Instrum. 18, 100.

Acta Cryst. (1954). 7, 103

A Hexagonal Modification of a Salt of Millon's Base

By Lies Nifssen and William N. Lipscomb
School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U.S.A.

(Received 11 May 1953)
A hexagonal modification of $\mathrm{Hg}_{2} \mathrm{NBr}$ has an $\mathrm{Hg}_{2} \mathrm{~N}^{+}$framework based upon the idealized tridymite $\left(\mathrm{SiO}_{2}\right)$ structure, with Br^{-}in the interstices. The unit-cell dimensions are $a=6.65$ and $c=11 \cdot 26 \AA$. The deviation of the axial ratio $c / a=1.693$ from the ideal value of 1.633 is probably related to the slightly greater stability of this hexagonal modification as compared with the cubic form in which the $\mathrm{Hg}_{2} \mathrm{~N}^{+}$framework is based upon the cristobalite structure. The $\mathrm{Hg}-\mathrm{N}$ bond distance is $2.06 \AA$.

A correction of $1 \cdot 6 \%$ in the lattice constants of the $\mathrm{HgNH}_{2} \mathrm{Br}$ structure is given.

An interesting analogy exists between the idealized SiO_{2} structures and the $\mathrm{Hg}_{2} \mathrm{~N}^{+}$framework in Millon's base and its salts. In the cubic modification (Lipscomb, 1951 a) the $\mathrm{Hg}_{2} \mathrm{~N}^{+}$framework has the idealized cristobalite structure. In the hexagonal modification described here a similarly idealized tridymite structure
exists for $\mathrm{Hg}_{2} \mathrm{~N}^{+}$in which Si is replaced by N , thus forming regular tetrahedral bonds and Hg replaces O , forming linear bonds at 180° angles. The bromide ions fit into the interstices of this framework, as described below.

This study is part of a more general program of
studies of the compounds produced in reactions of various $\mathrm{Hg}(\mathrm{I})$ or $\mathrm{Hg}(\mathrm{II})$ salts with ammonia. A general summary, not including the present results, has recently appeared (Lipscomb, 1953).

Experimental results and discussion

The sample of $\mathrm{Hg}_{2} \mathrm{NBr}$ was prepared by reaction of $\mathrm{Hg}_{2} \mathrm{Br}_{2}$ with dilute aqueous ammonia, washing the precipitate intermittently for several days with ammonia until no further changes were observable in the diffraction pattern, and then evaporation of the free mercury at $110^{\circ} \mathrm{C}$. Our analytical results are: Hg , $80 \cdot 4 \%$; N, 3.0%; Br, 16.4%; in good agreement with the values $81 \cdot 0 \%, 2 \cdot 8 \%$ and $16 \cdot 2 \%$ calculated from the formula $\mathrm{Hg}_{2} \mathrm{NBr}$.

Only a powder specimen was available for the diffraction analysis. The pattern was obtained by means of a General Electric XRD-3 unit with the use of a Geiger counter for recording the diffracted $\mathrm{Cu} K \alpha$ radiation. Integrated intensities and spacings were measured from a tracing of this pattern by the usual method.

As a first attempt towards the analysis of the pattern a radial distribution function was prepared from the summation (Waser \& Schomaker, 1945),

$$
r D(r)=\sum_{i} \frac{I_{i} \sin 2 \theta_{i}}{1+\cos ^{2} 2 \theta_{i}} \exp \left[-B \sin ^{2} \theta / \lambda^{2}\right] \sin 2 \pi h_{i} r
$$

where $h_{i}=2 \sin \theta_{i} / \lambda$. The summation (Fig. 1) was made for values of $B=0$ (broken line) and $B=4 \AA^{2}$ (solid line). The resulting large peaks at $3 \cdot 4,5 \cdot 6$ and 6.5 \AA indicate that the $\mathrm{Hg} \cdots \mathrm{Hg}$ distances are essentially the same as in the cubic form and that the structures must be very closely related. Many unsuccessful attempts were made to index the pattern on some small distortion of the cubic structure, because such

$$
r D(r) n_{1}^{2}
$$

Fig. 1. Radial distribution function for $\mathrm{Hg}_{2} \mathrm{NBr}$.
reversible distortions had previously been observed by us for the cubic $\mathrm{Hg}_{2} \mathrm{NCl}$ structure (Nijssen \& Lipscomb, 1952a).

At this stage of our study several single crystals of kleinite were sent to us through the courtesy of Dr George Switzer (National Museum, Smithsonian Institute, Washington, D.C.). Although kleinite does not have the same structure as our sample of $\mathrm{Hg}_{2} \mathrm{NBr}$, the similarity of the spacings, but not of intensities, led us to test the tridymite-type of structure.

The hexagonal pattern was indexed successfully on a unit cell with dimensions

$$
a=6.65 \AA \text { and } c=11 \cdot 26 \AA,
$$

where the accuracy is probably $\pm 0.02 \AA$. The axial ratio $c / a=1.693$ is slightly greater than the ideal axial ratio of $(8 / 3)^{1 / 2}=1 \cdot 633$ for reasons discussed below. The atomic positions

```
8 Hg at \(0, \frac{1}{2}, 0 ; 0, \frac{1}{2}, \frac{1}{2} ; \frac{1}{2}, 0,0 ; \frac{1}{2}, 0, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}, 0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2} ;\)
    \(\frac{1}{3}, \frac{2}{3}, \frac{1}{4} ; \frac{2}{3}, \frac{1}{3}, \frac{3}{4}\);
4 N at \(\frac{1}{3}, \frac{2}{3}, \frac{1}{16} ; \frac{1}{3}, \frac{2}{3}, \frac{7}{16} ; \frac{2}{3}, \frac{1}{3}, \frac{9}{16} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{1} \frac{5}{6}\)
```

were assumed. Two possible choices seemed most reasonable for the bromine positions, they are:

Structure A

4 Br at $0,0,0 ; 0,0, \frac{1}{2} ; \frac{1}{3}, \frac{2}{3}, \frac{3}{4} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{4}$;
and
Structure B
4 Br at $0,0, \frac{1}{4} ; 0,0, \frac{3}{4} ; \frac{1}{3}, \frac{2}{3}, \frac{3}{4} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{4}$.
Both of these possible structures, which place the Br^{-} in the interstices of the $\mathrm{Hg}_{2} \mathrm{~N}^{+}$framework, were tested by calculation of the intensities. The contribution of Br^{-}was sufficiently great to allow an unambiguous choice. The intensities of only those reflections for which $l=2,6,10 \ldots$ are different for these two possible structures. The intensities for Structure A are listed in Table 1, and specific examples of calculated intensities for Structure B which disagree* with the observations are $I_{002}=36, I_{102}=40$ and $I_{202}=213$.

Thus Structure A, shown in Fig. 2, is the correct one. The space group is $D_{6 h}^{4}-C 6 / m m c$.

The average $\mathrm{Hg}-\mathrm{N}$ bond distance is $2.06 \AA$, in reasonable agreement with the value of $2.07 \AA$ found in Millon's base (Lipscomb, 1951a) and $2.05 \AA$ found in $\mathrm{HgNH}_{2} \mathrm{Cl}$ (Lipscomb, 1951b). The $\mathrm{Hg} \cdot \mathrm{Br}$ distances are $3.33,3.41$ and $3.84 \AA$, all of which seem rather large and thus suggest that these bonds are predominantly ionic. The sum of ionic radii for Hg and Br is $3.05 \AA$ (Pauling, 1940, p. 346) whereas the sum of covalent radii is $2.50 \AA$, if one obtains the Hg covalent radius by subtraction of $0.70 \AA$ from the

[^0]Table 1. Crystal Data for $\mathrm{Hg}_{2} \mathrm{NBr}$

$h k l$	I_{c}	$(\sin \theta / \lambda){ }_{0}$	I_{o}	$h k l$	I_{c}	$(\sin \theta / \lambda){ }_{0}$	I_{o}
100	138	0.086	139	421	$1)$		
002	105	0.089	104	219	1)		<2
101	33	0.097	38	228	31	0.466	19
102	1	-	<2	422	46	$0 \cdot 468$	20
110	20	$0 \cdot 150$	21	1,1,10	6	0.469	13
103	6	$0 \cdot 159$	6	504	2)		
200	97)			318	4	0.474	5
112	100 \}	$0 \cdot 174$	240	2,0,10	23	$0 \cdot 477$	8)
004	102 \}	$0 \cdot 178$	133	423	$11\}$	$0 \cdot 479$	$11\}$
201	8 \}	$0 \cdot 178$	133	416	11		
202	335	0.195	432	510	2	-	<2
104	33	0.198	45	334	1	-	<2
203	3	$0 \cdot 219$	5	511	1	-	<2
210	24	0.230	22	505	1	-	<2
114	8)			327	1	,	<2
211	8 \}	$0 \cdot 234$	19	424	19	$0 \cdot 493$	11
105	4	$0 \cdot 239$	5	1,0,11	10	$0 \cdot 498$	8
212	0)	$0 \cdot 248$	77	408	10)	$0 \cdot 498$	8
204	76 \}	0.248	77				
300	4	$0 \cdot 260$	3				
006	$\left.\begin{array}{l}5 \\ 3\end{array}\right\}$	$0 \cdot 266$	6			${ }^{0.1}$	
302	30	$0 \cdot 275$	26				
106	0	-	<2				
205	3	$0 \cdot 282$	5			(0)	
214	21	$0 \cdot 290$	21			(0)	
220	66	$0 \cdot 301$	62			-	
116	23	0.306	32				
310	$\left.{ }_{21}^{9}\right\}$	0.314	34				
222	21 ,	0.314	34				
304 311	$\left.\begin{array}{l}3 \\ 3\end{array}\right\}$	0.316	3		\bigcirc	-	
206	77	0.318	69				
215	3	-	<2				
107	1	-	<2				
313	2	$0 \cdot 340$	2			1	
400	12	$0 \cdot 347$	10			$\frac{1}{4} \text { and } \frac{1}{3}, \frac{2}{3}$	
224	$\left.\begin{array}{r}78 \\ 1\end{array}\right\}$	$0 \cdot 349$	64				
216	0	-	<2				
008	12)	$0 \cdot 356$	13		$\mathrm{Br} a$	and	
207	1 50	-356	13				
314	10 \}	0.359	51				
108	5	$0 \cdot 366$	6			ated z coordi	
403	11	0.373	<2		N	and $\frac{15}{16}$.	
306 320	11	0.373 0.379	10 4			and $\frac{7}{16}$	

Fig. 2. The unit cell of hexagonal $\mathrm{Hg}_{2} \mathrm{NBr}$.
$\mathrm{Hg}-\mathrm{N}$ distance, and assumes a covalent radius of 1-14 \AA for Br (Pauling, 1940, p. 164).

The $\mathrm{Br} \cdots \mathrm{N}$ distance is $3.52 \AA$, which is very close to the sum of van der Waals radii of $1.5 \AA$ for N and $1.95 \AA$ for Br (Pauling, 1940, p. 189). It seems very likely that this contact, along the c axis, is mainly responsible for the expansion resulting in an axial ratio of $c / a=1.693$ instead of 1.633 . A comparison of this hexagonal form of $\mathrm{Hg}_{2} \mathrm{NBr}$ with the cubic $\mathrm{Hg}_{2} \mathrm{NCl}$ suggests that the relatively large Br^{-}ion renders the cubic $\mathrm{Hg}_{2} \mathrm{NBr}$ less stable by requiring this non-ideal axial ratio, and hence hexagonal $\mathrm{Hg}_{2} \mathrm{NBr}$ forms more readily in ordinary chemical reactions involving either $\mathrm{Hg}(\mathrm{I})$ or $\mathrm{Hg}(\mathrm{II})$ salts. Thus the only method by which we have prepared cubic $\mathrm{Hg}_{2} \mathrm{NBr}$
is by exchange of the negative ions with an already existing cubic $\mathrm{Hg}_{2} \mathrm{~N}^{+}$framework. On the other hand, owing to the relatively smaller size of Cl^{-}, cubic $\mathrm{Hg}_{2} \mathrm{NCl}$ forms readily in chemical reactions in dilute aqueous ammonia.

The hexagonal form of $\mathrm{Hg}_{2} \mathrm{NBr}$ shows little or no tendency to exchange its negative ions, unlike the behavior of cubic $\mathrm{Hg}_{2} \mathrm{NBr}$. It seems probable that this difference is again to be associated with the relatively tighter packing of Br^{-}as suggested by the abnormal axial ratio. In addition, there is only one possible direction of exchange, along the c axis, in contrast with the several possible directions of exchange in the cubic form. It is, however, possible that the $\mathrm{Hg} \cdot \cdots \mathrm{Br}$ bonds are somewhat more covalent in the hexagonal form, and that our resulting long observed distances are merely some statistical average over shorter covalent distances. On the other hand the observed intensities seem sufficiently sensitive to the Br positions that we feel that the $\mathrm{Hg} \cdots \mathrm{Br}$ bonds are most probably predominantly ionic, as they are in the cubic form of $\mathrm{Hg}_{2} \mathrm{NBr}$.

Finally, we wish to correct an error in the related paper on the structure of $\mathrm{HgNH}_{2} \mathrm{Br}$ (Nijssen \& Lips-
comb, 1952b). Owing to the use of an incorrect value of the wave length, all distances including the unitcell values, spacings and bond distances should be increased by 1.58%. The correct cell constants are thus

$$
a=5.52, b=4.56 \quad \text { and } \quad c=6.87 \AA
$$

The $\mathrm{Hg}-\mathrm{N}$ bond length, based on the assumption of strictly tetrahedral bond angles about N , is $2 \cdot 10 \AA$, still in reasonable agreement with the values listed above. Fortunately, these changes are sufficiently small that our conclusions remain unchanged.

References

Lipscomb, W. N. (1951a). Acta Cryst. 4, 156.
Lipscomb, W. N. (1951b). Acta Cryst. 4, 266.
Lipscomb, W. N. (1953). Analyt. Chem. 25, 737.
Nijssen, L. \& Lipscomb, W. N. (1952a). J. Amer. Chem. Soc. 74, 2113.
Nijssen, L. \& Lipscomb, W. N. (1952b). Acta Cryst. 5, 604.

Pauling, L. (1940). The Nature of the Chemical Bond, 2nd ed. Ithaca: Cornell University Press.
Waser, J. \& Schomaker, V. (1945). J. Amer. Chem. Soc. 67, 2014.

Acta Cryst. (1954). 7, 106

The Structure of Lanthanum Sulfate Enneahydrate*

By Elton B. Hunt, Jr., \dagger R. E. Rundle and A. J. Stosick \ddagger
Department of Chemistry, Iowa State College, Ames, Iowa, U.S.A.

(Received 16 January 1953)

Abstract

Lanthanum sulfate enneahydrate, $\mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}$, is hexagonal, $a_{0}=10.98, c_{0}=8.13 \AA, Z=2$, space group $C 6_{3} / m$. There are two types of lanthanum ions in the structure: two at $0,0,0 ; 0,0, \frac{1}{2}$ with twelve sulfate oxygens about them at $2 \cdot 72 \AA$, two at $\pm \frac{1}{3}, \frac{2}{3}$, $\frac{1}{4}$ with six water molecules and three sulfate oxygens at $2 \cdot 6-2 \cdot 7 \AA$. It is presumed that the failure of the heavier rare earth sulfates to form an enneahydrate is due to their inability to support a coordination number of twelve for oxygen.

Introduction

It is noteworthy that the lighter rare earth chlorides and sulfates form higher hydrates than can be obtained with the similar heavier rare earth salts. Thus the sulfate enneahydrates, $M_{2}\left(\mathrm{SO}_{4}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}$, and chlo-

[^1]rides, $M \mathrm{Cl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$, are known for the rare earths, lanthanum through praseodymium, while the heavier rare earths form the compounds $M_{2}\left(\mathrm{SO}_{4}\right)_{3} .8 \mathrm{H}_{2} \mathrm{O}$ and $M \mathrm{Cl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ under similar conditions. Since ion size decreases with increasing number in the rare earth series, it seemed possible that this difference was due to a coordination difference of light and heavy rare earth ions for water and oxygen.

Several hydrates of trivalent rare earth salts have been examined structurally (Ketelaar, 1937; Helmholz, 1939). These and gadolinium formate (Pabst, 1943) have been consistent in showing an oxygen coordination number of nine, in which six oxygens form a trigonal prism, and the other three, equidistant from the rare earth ion, are found out from the prism

[^0]: * Actually the intensities are fairly sensitive to the Br positions. About ten different Br arrangements were tested, of which Structure A was unquestionably the best.

[^1]: * Contribution No. 273 from the Institute for Atomic Research and Department of Chemistry, Iowa State College, Ames, Iowa, U.S.A. Work was performed in the Ames Laboratory of the Atomic Energy Commission. Submitted as part of a thesis by Elton B. Hunt, in partial fulfillment of the requirements for the Ph.D. degree, Iowa State College, 1950.
 \dagger Present address: Research Department, Stanolind Oil and Gas Co., Stanolind Building, Tulsa, Oklahoma, U.S.A.
 \ddagger Present address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

